Int. ] Seids Structures Vol. 29, No. 6. pp. 669-6K8, [992 OG20-7683 4 $5.00+ 00
Printed 10 Great Britun. ¢ 1991 Pergamon Press pic

MECHANICS OF SUBINTERFACE CRACKS IN
LAYERED MATERIAL

H. Lu and T. J. LARDNER
Department of Civil Engineering, University of Massachusetts, Amherst, U.S.A.

(Received 13 March 1991 ; in revised form 10 June 1991)

Abstract—Two-dimensional finite cracks near a bi-material interface are investigated. A crack under
uniform pressure or a pair of concentrated loads on its faces is modeled by a dislocation density
along the crack length leading to singular integral equations from which the stress intensity factors
are obtained. We investigated the case when the crack is near the interface of two half-planes or
near a finite coating. In both cases. the singular integral equations were solved numerically by
expanding the unknown dislocation density in terms of Chebyshev polynomials.

When the crack is near the interface of two half-planes. the stress intensity factors and the
energy release rate were obtained as a function of the crack-to-interface distance, and we show that
they approach previously derived asymptotic solutions.

When the crack is near the interface of a coated substrate we find in the case of soft coating.
for all values of the thickness of the coating and the crack-to-interface distance that the normalized
Made 1 stress intensity factor and the normalized cnergy release rate are greater than one, and the
normalized stress intensity factor for Mode U is negative. As a result, a soft coating does not prevent
a crack propagating toward the interfuce. On the other hand, for a stitl coating, whether the
normalized Maode [ stress intensity factor and the normalized energy release rate are greater or less
than one, and whether the normalized Mode H stress intensity is positive or negative depends on
the relative values of the material stiffness, the crack-to-interface distance, and the thickness of the
coating. For this case the critical thickness of the coating for the crick to propagate parallel to the
interfuce was obtained. We also investigated the effeet of the value of the matertal mismatch
parameters on the stress intensity factors and the energy release rate.

[. INTRODUCTION

The bonding of different materials is widely used in industry for adhesive joints, fiber-
reinforced materials, coating/substrate systems, ceramic/metal systems and the like, and
manufacturing imperfections in bonding usually appear as inclusions, flaws or crucks near
or on the bonded interfaces. These imperfections create stress concentrations and may lead
to delamination of a coating from a substrate, pull out of fibers in a fiber-reinforced matrix,
failure of an adhesive joint, etc. In view of its importance in the behavior of a bonded
structural component, the problem of an interface crack has given rise to a large number
of studies in order to understand the failure process of the interface.

Witliams (1959), Malyshev and Salganik (1965), England (1965), Rice and Sth (1965),
Cherepanov (1979) and Erdogan (1963, 1965) were among the original investigators of
interface crack problems ; a recent overview of the analysis of interface cracks can be found
in Rice (1988). Comninou (1990) and Lu and Lardner (1991). In addition to cracks along
an interface, cracks approuaching, parallel to, or terminating at an interface have also
been considered by several investigators [see c.g. Bogy (1971), Erdogan and Arin (1975),
Ashbaugh (1975), Fenner (1976), Comninou (1979), Lu and Erdogan (1983a, b), He and
Hutchinson (1989) and Chen (1991)].

The application of dislocation singularities to crack problems has provided sim-
plifications in the formulation and solution of many crack problems (Rice, 1968 ; Bilby and
Eshelby, 1968). The approach is to model a crack by continuously distributed dislocations
described by a density function (Thouless er al., 1987 ; Hutchinson et al., 1987; He and
Hutchinson, 1988, 1989 : Suo and Hutchinson, 1989a, b, 1990 ; Hutchinson and Suo, 1991)
and to solve the resulting singular integral equation numerically.

The objective of this paper is to investigate cracks near and parallel to an interface
under uniform pressure or a pair of concentrated loads. The interest in cracks under a pair
of concentrated loads is motivated by the use of indentation fracture mechanics to inves-
tigate the fracture toughness of interfaces (Ostojic and McPherson, 1987 ; Cook and Pharr,
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1990; Evans et al.. 1986 ; Lardner et al., 1990). We will obtain results for the stress intensity
factors and the energy release rate. In addition we will exhibit the range of applicability of
the asymptotic solution for the sub-interface crack derived by Hutchinson et al. (1987). In
our investigation of coated systems we will obtain the value of the critical thickness of the
coating for which K;; = 0. We also note an interesting dependence of the stress intensity
factors for the case of concentrated loading on the distance to the interface.

2. FORMULATION: TWO HALF-PLANES

The method of complex potentials (Muskhelishvili, 1953) provides an effective way to
solve the stress field induced by the presence of a dislocation in a material. The stress field
due to a dislocation near an interface, Fig. la, has been derived by Suo (1989): [see also

Suo and Hutchinson (1990)] and the stress field due to this edge dislocation along y = — ik
is
2B o |
O’_,,_,.+IO'\,_,. = _C_ +BHI(Q)+BH2(Q)v (l)

where { = x—& A = (a+0)/(1 =), TT = (x—B)/(1 + B).
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Fig. I. (a) Edge dislocation ncar an interface. (b) Subinterface crack near the interface of two half-
plancs. (c) Subinterface crack under coating of thickness /..
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where

_ (ke + D) =g+ D)
ik +D+pa(n, +1)

_ (K =D =p(x, = 1)
- -+ D+ (e +1)

where the subscripts | and 2 refer to each of the two materials, k = 3 —4v for plane strain
and (3 —v)/(1 +v) for plane stress. v is Poisson’s ratio. u is the shear modulus, and 4 is the
distance of the crack from the interface (Suo. 1989; Suo and Hutchinson. 1990). Along
= = x+iy, ¥ > 0 (material No. 1), we have

) 2 _ l+A 1+
o, +io,, = B[(1 +IDAh—(1+A)y] CHi I +8B {C—i(h+y) + §+i(h+_v)}' (3)

A crack parallel to an interface or what we call a subinterface (Hutchinson er al.. 1987)
crack has a crack tip singularity of order r~ ' °. Of particular interest is the amount of Mode
Il behavior at the crack tip to determine the subsequent direction of propagation from the
crack tip. The subinterface crack as shown in Fig. 1b is modeled by continuously distributed
edge dislocations along the crack of length 2a. The interface is between two semi-infinite
planes at y = 0 and the crack is located in material No. 2 below the surface. Using (1) after
imposing the boundary condition that the traction on the crack faces is j(.x), we obtain

" B " ~
Zf (92 d¢ +f BEH (x=0) d;:'f-J BEOH(x=8)dE =p(x), vl <a. ()

,(,\—

In addition we have the condition

f B(Z) dE = 0. (5)

The integral equation (4) and condition (5) are non-dimensionalized with

C=at, |1l < x=au, |ul <l

B(E) = A(1) plx) = plu) (6)

and take the forms

| .
_j —~(—‘—) dl+J AWMH (x=C)u dI+J AWNH (x=)adt = pu), |ul <1 (7)
- ~ 1

-1t

1
J\ A(n) dr = 0. (8)

The integral equation (7) can be solved numerically by the techniques used for example
by Erdogan (1969), Erdogan et a/. (1972), and the references cited above. Therefore, in the
case of uniform pressure the dislocation density function A(r) can be assumed to be of the
form (Hutchinson ef al., 1987)

A(t) = Z a T (1) 9
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where T, (¢) is the Chebyshev polynomial of the first kind. In the case when a concentrated
load is applied on the surface of the crack at a point u,. p(u) = — Pyd{u—u,), the presence
of the Delta function in the loading gives rise to another singular point in the dislocation
density corresponding to the point at which the concentrated load is applied. Therefore,
the dislocation density function A(r) for a concentrated load can be assumed in the form

1 C
Al = ———= {—* + Y aka(t)} (10)

1__[ —uy =
where gy = 0 upon the use of (8) and

":ou V /I — uo (1
to provide the correct singularity at ¢ = u,.

The governing equations for both loadings are given in Appendix A. The stress intensity
factors are given by (A3) and (A4) along with the energy release rate in (A5S).

The 2N unknowns in (Al) of Appendix A, the real and imaginary parts of a,. can be
solved so that the real and imaginary parts of (Al) are satisfied at N selected collocation
points u, on the interval [u| < 1. We have used the Gauss-Legendre points for u; in our
numerical work (Erdogan ¢t al., 1972).

The numerical solutions were carried out using the IMSL software, and the major
effort in the solution process was to accurately evaluate all the improper integrals. The
integrals /; and 7, in (A2) have end point singularitics, and they were evaluated by the
subroutine DQDAG. The integral that appears on the right side of (A1) has a singular
point at the location of the concentrated load in addition to the end point singularities and
it was evaluated by the subroutine DQDAWC.

The convergence of the solutions depends on the normalized crack-to-interfuace distance
p = hja. For small p, typically p < 0.1, the convergence of the solution requires a large
number of integration points as discussed by Lu (1991). We have generated solutions for
p as small as 0.01 for the uniform pressure loading and 0.05 for the concentrated loading.
We note that for small values of p, Hutchinson's asymptotic solutions (Hutchinson ¢t al.,
1987) for a subinterface crack can be used and we will show that our solutions converge to
Hutchinson’s asymptotic solutions for smali p.

3. NUMERICAL RESULTS AND DISCUSSION

The numerical results for the stress intensity factors K|, K, and the energy release rate
G are presented by normalizing them with respect to the corresponding values of the
homogeneous material No. 2. The results for the case of uniform pressure loading are
shown in Figs 2-4. When the crack is far away from the interface, the results reduce to the
results for the homogeneous case as we anticipate.

When material No. 1 is stiffer than material No. 2, 2 > 0, the positive values of K|, as
shown in Fig. 3 indicate that subsequent cracks propagating from the crack tips tend to
propagate away from the interface. A corresponding argument holds when material No. |
is softer than material No. 2, 2 < 0, and the negative values of K|, indicate that the crack
will propagate toward the interface. In the special case for material No. | being infinitely
compliant, = — 1.0, the crack is approaching a free surface, and the stress intensity factors
and the energy release rate increase to infinity.

The results shown in Figs 2-4 approach to Hutchinson’s subinterface asymptotic
solutions (Hutchinson et al., 1987) when the crack is very close to the interface. 4/a < 0.05.
Further we see that for x > —0.6 (recall that the physical range of 2 is —1.0 < x < 1.0,
with § equal to 0). the asymptotic results are surprisingly accurate to values as high as
hia~0.3
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Fig. 2. Stress intensity factor K for cracks of length 24 under uniform pressure and parallel to an
interface of two hall-planes at a distance & ff = 0.
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Fig. 3. Stress intensity factor K, for cracks of length 2a under uniform pressure and parallel to an
interfuace of two half-planes at a distance 4; § = 0.
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The results for the case of concentrated loadings are shown in Figs 5-7. [t 1s seen that
the stress intensity factors given in Figs 5 and 6 and the energy release rate given in Fig. 7
approach to a peak value and then decrease (or increase) to the asymptotic solutions when
h as less than 0.1. This implies that under u pair of concentrated loads. the crack may or
may not propagate depending on the fracture toughness of the material and the crack-to-
interfuce distance. or equivalently on the crack length at a fixed distance from the interface.
As suggested in Fig. 8. if the critical energy release rate of the material No. 2 is G, a crack
under concentrated load will propagate if its length 1s between 2a, and 2u.. otherwise it
will remain stable. This phenomenon is especially notable when material No. 1 is very soft.
We note that the peak values occur in the range 0.1 < ha < L.

The ctfect of f on the stress intensity tactors 15 shown in Figs 9 and 10. Again we
see that the solutions approach the Hutchinson er «f. (1987) subinterface solutions. The
subinterface solution is surprisingly accurate up to values as high as fi/a = 0.10.

4. SUBINTERFACE CRACKS UNDER COATINGS

This section is an extension of Sections 2 and 3 in which material No. 1 is now of finite
thickness /. 50 as to form a coating-substruate system as shown in Fig. le. We will focus on
the ctfect of the thickness of the coating and the crack-to-intertface distance on the stress
intensity factors, the energy release rate and the direction of crack propagation. We will
also consider the question of the critical thickness of the coating to ensure that the crack
will propagate parallel to the interfuce (Hutchinson e all, 1987).

Figure 11 shows the approach to be taken following Suo and Hutchinson (1989a). As
depicted in Fig, 11, the solution to problem (i) where an edge dislocation with a Burger's
vector b = b +1h s located at (0, - /) near the coating-substrate interface can be obtained

G =
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Fig. 4. Energy release rate G for cracks of fength 2a under uniform pressure and paraliel to an
intertuce of two half-planes at a distance s ff = 0.
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Fig. S. Stress intensity factor K for cracks of length 2a under concentrated load and paraliel to the
interface of two half-plancs at a distance 4 § = 0.
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Fig. 6. Stress intensity factor Ky, for cracks of length 2a under concentrated load and parallel to the
interface of two half-planes at a distance &; 8 = 0.
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Fig. 7. Encrgy release rate ¢ for cracks of length 2a under concentrated load and parallel to the
interface of two half-planes at a distance f1: ff = 0.
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Fig. 8. Stability of cracks of length 24 under concentrated load and parallel to the interface of two
half-planes at a distance h; 2 < 0. ff = 0.
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by the superposition of the problems ot (ii). an edge dislocation with a Burger's vector
b = b, +1b, at (0. —h) neur the interfuce of two half-planes and. (iii) the coating-substrate
system without the edge dislocation but with an external traction —a*(x) prescribed on the
surface of the coating v = /i, where o*(v) are the stresses along v = k& calculated from
problem (ii).

The stresses along v = /. in material No. 1 follow from (3) in the form

o
‘ 2i
o (v h)Fio (x ) = B +Tha— (1 + A LTI
(e +iod l M )"]{_t+(11+izcl]‘
- 1+A P+ 1T
+ B S P i 2
{.\‘—1(/1+/1&) * ,\‘+l(h+h<)} ()
and the stresses along v = — /& in material No. 2 are given by (1),

The second problem is a traditional two-dimensional clasticity problem and can be
solved by the use of stress functions and Fourier transforms as outlined by Suo and
Hutchinson (1989a): detailed derivations of the solutions are given in Lu (1991). The
stresses along v = —frin material No., 2 are:

o (X =) +io (x. —h) = BG (x) + BG (x) (1%

where G (v) and G.{v) are given in Appendix B
The formualation in terms of the distocation density for the subinterface erack follows
the steps given in Section 2 and we obtain a non-dimensional integral cquation in the form :

"1 T _ 1
2 [ " [dH-} AF (O (lr-kj ANE (adr = plu)  ful < | (14)
t e t ]

with the subsidiary cquation

.
J A dr =0 (15)
I

where

FiQ) = () +G()
Fo9) = H( + 610 (16)

These results can be obtained from results in Suo and Hutchinson (1989a) upon setting H
in their notation equal to infinity.

Following the same arguments as in Section 2, we assume the unknown function A(r)
as in (9) and (10) and the form of the resulting equations is given in Appendix C.

The accuracy of the solution depends on the evaluations of the integrals in (C2) to
(C4). We note that the integrands of these integrals contain integral expressions G, and
G ,. Therefore, the evaluation of the integrals requires greater care and computer time than
the evaluation of the integrals in the previous section. The integrations were performed by
the IMSL subroutines and the subroutine DQDAGI was used to evaluate the inner integrals
G, and G, in the integrals /. /. and the right-hand side of (C2). The subroutines DQDAG
and DQDAWC were then used to evaluate the integrals 7, and 7, and the right-hand side
of (C2) respectively; see Lu (1991) for additional details. We have obtained the solutions
for the stress intensity tactors and the encrgy release rate for 2 as small s 0.2 using N = 20
and N = 10for 22 > (.2

The direction of propiagation ol the crack is determined by the Mode H stress intensity
factor K. We have scen from the results of Section 3 with two half planes that when
material No. [ is stiffer than material No. 2. 2 > 0. the crack will propagate away from the
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interface, K;; > 0. under symmetric loading. In the case of a coating-substrate system, -k
is a function of the relative stiffness of the coating and the substrate as well as of the
thickness of the coating.

When 2 is positive, K|, is negative when A, is small and increases with an increase in
the value of .. At a critical thickness &, the stress intensity factor K|, becomes zero, and
the crack will propagate parallel to the interface. This critical thickness of the coating
depends explicitly on the relative stiffness of the system. x (with § = 0). and the crack-to-
interface distance & as shown in Fig. 12. It is seen that A, increases as /i decreases, and
decreases as x increases. That is to say. the less stiff coatings need to be thicker if the crack
is to propagate parallel to the interface. Furthermore. we see from Fig. 12 that the critical
thickness of the coating is not sensitive to the external loading and is fairly constant for
0.5 < hja< I.

The stress intensity factors and the energy release rate of the subinterface crack under
uniform pressure and a pair of concentrated loads as functions of the crack-to-interface
distance with 4, = 0. 0.5. 1, 2. 4, o¢ and with x = 0.8, 0.2 and —0.2. f# =0 have been
calculated. Lu (1991).

The responses of the coating-substrate system to the case of concentrated loading are
similar to the case of uniform pressure: see Figs [3-15. For a crack under the pair of
concentrated loads. the stress intensity factors if 4 1s large enough reach a peak value before
approaching a steady value when A/a is small.

The effect of the value of ff on the stress intensity factors and the energy releasc rate
is shown in Figs 16-18 in which the results for the coating-substrate system with a = 0.8,
f = 0.0 arc compared to the coating-substrate system with « = 0.8, f = —0.2 and 0.2. We
found in general that the effect of # on the magnitude of the stress intensity factors and the

he #1 X

lh N #2

(i)

O'"(x) Oyt = o’

d_7 /
he | Al x
Lh 92

(ii)

0,0 +iC0,==-0"

L/

he #l x
Ih #2
(iii)

Fig. 11. Dislocation near a coating-substrate system. Problem (i) = (ii) + (iii).
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energy release rate is not significant ; results with ff = 0 can be used as a good first estimate
for the stress intensity factors and the energy release rate tor a coating-substrate system
with a subinterface crack.

5. CONCLUSIONS

We have investigated a number of problems for two-dimensional cracks near a bi-
material interfuce. The major cffort in the numernical solution was to accurately evaluate
the improper integrals appearing in the singulur integral equations. We used the IMSL
package to carry out all the integrations and the numerical convergence of the integrals
depends on the crack-to-interfuce distance.

We found that when the crack is embedded in the less still material of two hall-planes,
2 > 0, the normalized stress intensity fuctor K/ K, and the normalized energy release rate
G G, are less than one for all values ol the crack-to-interfuce distance. Conversely, when
the crack is embedded in the stiffer material, x < 0, A/K}, and G/G,, are greater than one
for all values of the crack-to-interface distance. When x > 0 the normalized stress intensity
factor Ky /Ky is positive so that the cruack will propagate away from the interface, and when
2 < 0. K/ Ky 1s Begative so that the crack will propagate toward the interface.

We found that the stress intensity factors and the encrgy release rate approach to the
asymptotic solution derived by Hutchinson er al. (1987) for both the case of uniform
pressure loading and the concentrated loading when the crack is near to the interface. When
the crack is under concentrated load. the stress intensity factors and the energy release rate
reach a peak value before approaching their asymptotic values.

In the case of a tinite thickness material on a half-plane we found that for a soft
coating, x < 0. K,'Kjy and G/G, arc always greater than one. and K,,/Ky, is always negative
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Fig. 13. Stress intensity fuctor K for the cases of concentrated loading and uniform pressure loading
with x = ~0.2,02, and f# =0, C: p(x) = =P, (x0), U:ip(y) = ~p.
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Fig. 14. Stress inlgnsily factor K, for the cascs of concentrated loading and uniform pressure loading
withx = ~0.2,02. and B =0: C: p(x) = = Pod(x). U: p(x) = —p.



682 H. Lt and T. J. LarDNER

2.5
oy
3 ?
he | "noox
20
G
o 15F
Gy
10
0.5 et . B —
. 1 10
h'a
Fig. 1S, Energy release rate G tor the cases of concentrated loading and unitorm pressure loading
withx - ~02,02 and i 0. Ciply - =Pl Uiplyy - —p.
18

K
Kro
0.4 .
R 1 10
h'a
Fig. 16, Effect of ff on the stress imtensity factor A 2 = 0.8, ff = ~0.2, 0.0 and 0.2 concentrated

loading.



Mechanics of subinterfuce eracks

03

Kn
Ko
h/a
Fig. 17. Effect of # on the stress intensity factor Ky 2 = 08, ff = ~0.2, 0.0 and 0.2 concentrated
foading.
3
4
B=0.2 e " ox
In ~
sz.._j
2 -
S
Go
' -
\/
° . - 1 hnmadhe
.1 1 10
h/a
Fig. 18. Effect of f# on the encrgy release rate G: x = 0.8, f = —0.2, 0.0 and 0.2; concentrated

loading.



6%+ H. Lu and T. J. LARDNER

for all thicknesses of the coating A, and crack-to-intertace distance 4. That is, soft coatings
regardless of their thickness are not likely to provide reinforcement to the cracked substrate
and the crack will propagate toward the interface.

For a suff coating. K,,’Kj, can be positive or negative depending on the thickness of
the coating ; that is, whether the crack will propagate away or toward the interface depends
on the thickness of the coating. At a critical thickness of the coating, f1... where A, = 0, the
crack will propagate parallel to the interface. The magnitude of the critical thickness of the
coating decreases as the coating becomes stiffer and increases as the crack-to-intertace
distance /1 decreases. We find that the critical thickness of the coating is not sensitive to the
external loading on the crack and is fairly constant for 0.5 < /i« < 1. When the thickness
of the coating is greater than the critical thickness of the coating, it > h... K, Ky and G G,
are less than one for all values of the crack-to-interface distance.

The effect of f# on the stress intensity factors appears to be not significant over the
range of parameters we considered.
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APPENDIX A

For cracks near the interface of two half-planes. the form of the dislocation density function A(¢) is assumed
as (9) when the crack is under uniform pressure, and in the form of (10) when the crack is under a pair of
concentrated loads. Equation (8) then gives ¢, = 0 and the integral equation (7) becomes an algebraic equation
of the form

N N N
=2n Y aUc,+ Z I(uk)+ Y a1 k)
A=l k=1

k=1

= ~py —for uniform pressure
VU HAD+HA

= —C{J ~—'&)—t~-—”“—)a dl}—fur concentrated load (AD
U=ty

where
o { ‘- T (s
T (uk) = —1(,,rnj ALY dr

(- + ) I

L —0)—i2p([I=A) | ! T(0d
1. k) =-f MM =2pll =) L@ 4 _snpe J' /UL . (AD)
' (u=1)?+4p? J1=¢ Vu—r-i2p)' /=2
and p = Ha.

The stress intensity factors are then obtained in terms of the dislocation density function in the form
(Hutchinson er al., 1987),

N
R=2n/na ¥ a (A3)

k-

for the case of uniform pressure loading, and

N

K=2n,/nu{—£——+ Y ak} (A4)

1 —uy 7
for the case of concentrated loading.
The energy release rate is given by
v+ 1
G =21 kR (AS)
8y,
APPENDIX B

The two-dimensional elasticity problem for a coating-substrate system under the loading —a*(x) on the
surface of the coating is considered bricfly in this appendix : see Fig. 11. [n particular, we are interested in the
stress ficld along y = —h in the substrate (Suo and Hutchinson, 1989a).

The problem is solved using stress functions for the stresses and displacements and Fourier transforms as
outlined by Suo and Hutchinson (1988) ; see Lu (1991),

a*x _
dxéy

AU=0, Ay =0. au. (BD)

SAS 29:6-8B
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The stresses and displacements in terms of two real potentials are given by

. = U B U . é@v a
«TEE, TR T T T A (B
cU &
Yy = — (K 2
uu, ™ +(k+ l)f‘_r (B3)
U &Y
2 = e — =
uu, = e +{xc+ “C‘x' (B4)

The Fourier transform of U(x, y) satisfying the biharmonic equation for each material is assumed in the
forms (Suo and Hutchinson, 1988):

A A, . A, A
0|(A.,V) = [,—zl + _.-‘.v]e—hlv*' [’:T + “‘J‘l] e’ (B5)
A A A

i
7 B, B, )
U,(d.y) = I:A_‘—z‘-#.fy]e»hn -

where

Gy = FU )} = j Ulx,y)e* dx, i=1.2 (B7)

is the Fourier transform of U,(x, y).

The six constants A, A, 4,, 4,, B, and B, are to be determined from the boundary conditions that the
stresses and displacements are continuous across the interface (v = 0) and the traction on the surfuce of the
coating (¥ = A,) is prescribed as —o*(x) = —a%(x) —ig%(x).

The boundary and continuity equations lead to

A, +A, = B, (BY)
Ao ds A A B8 BY
LTI S VIR W IR 9
A A A

A, - l;}'!l‘l,“:-f-/‘)-é- %}!—c./h = F{B, + L:l.(.,g:} (B10)

A4, 2-—¢ Ay, 2-¢, B, 2-c¢,
|A‘.|+ 2 A2+|/.i+ 57 A.—F [A.|+72A”B: (BH)
(A, + A2Ah] €W [A) + Ah A J e = g8, (B12)

}‘ 3 ~ Al l N ’ 1hiA s

—I—i—‘A.Jf-Az(l-—l/.lhc) ek 4 m"’“““”‘]h‘) ¢t = jgr (B13)

where ¢y =k + 1, ey =ry+land T = u,/u,.
Solving the system of equations for 4,, 45, A; and 4, in terms of B, and B, we obtain

P PLfBY_{ aneh
[Pz. P:z]{B:}_{“iﬁ-'y(”-)} (Bt

where
P = —(a=PBY{1 +2ih) e M4 (1 —ff) e* (BIS)
Py =[f=(x=PVih) c*—[f—(B+ )ik ] > (BL6)
Py = (@=p) (1 =2ih) e "4+ (f—1)c* (B17)
Py = la—(@—fYih] e P~ {1+ (B+ 1) k] ™. (B18)

Equation (B14) provides a system of equations to solve for B, and B, under the loadings 67, and ¢?,. For
the purpose of algebraic convenience, B, and B, arc obtained by the superposition of the solutions taking the
loading to be symmetric and anti-symmetric. That is,

. e o
P, P8, - .fm(l) + .0_,_.,.(/:) (B19)
Py Pu B —167,.(4) ~16¢,,(4)
where the subscripts @ and s stand for the anti-symmetric and symmetric parts of the stress o), and a¥,.

The traction ¢*(x) can be written as

6*(x) = g}, +io%,(x) = [0 (x) + o), (V] +i[oh.(v) +0l.]

o
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where
B E 4R H* ’R,+(R:—R,)H
a),(x) = 3 ¥
(F*+H?): o+ H
) = B+B{ 4R Hx (R:+R,)x
el X 3 (C+H ) 4+ H?
) = B+ B —4R K} N 2R, —(R.—Ry)x
ool 2 |+ HHT X +H?
_B B 4R, Hx (R +R,)x
T = (N +HY) C+H?
H=nh+h,
R, =1+11
R, =1+A

Ry = R:h+R,h..

We note that under symmetric loading the stress function U;(x, ¥) must be symmetric in x; therefore its
Fourier transform must be symmetric in 4. Therefore, from (B7) we sce B must be symmetric in 4 and B, must
be anti-symmetric in 4. Similarly, under anti-symmetric loading O,(4. ¥) must be anti-symmetric in 4. and 8,
must be anti-symmetric in 4 and B, must be symmetric in A.

Therefore, (B14) can be rewritten in the form:

P PS80 B [ b dnd .
[P:. P::][n..u BJ = [—irf:...,u) ~idt.() (820
where B, = 8,,+8,,and B, = 8,,+ B,, and

@ (v) =

R,-R,
a,?,,(x) cos Avde = ~(B - B)n[R P R . ]m:'”“’

vy

6%.(x) = 2 .,

>

G () = ’f of,(v)sin Avdy = (IH-E)[R At - R'+R ]nc"‘”

R,-R
o* (r)wsmd\—(B+B)[—R.l—~—'~ 'ﬂ']nc an

tva

R,+R
G* (x) = J gt (x) cos ivdy = = (8- B [R,).— /—7;~~'] e,

Upon use of the inverse transform of 0,(4, x) we have the stress function U,(x, y) as

1 {“|8B B,
Us(x,y) = [ '+——;] cHlv e “ dh,

) b a
It follows that the stresses along vy = —h are
&3V, 0, r (- .
o, (x, —h 1 X, ~h) = s — et = - B — Bl e e i g2
wl h) +ig,,(x, —h) FRCHLy P ZRJ'. ) (B =B ih]e e di

. R
—-i»j. [I ! B, +8, (l—'l.lll)] b “rdi = f [=B,—B,+8,ih) ¢ * cos ix di
]l .ol A 7 Jo

i
’Ef (B, + By, — By} e *sinixdl. (B2I)

Substitution of B,,. B,,. B., and B, from (B20) into (B2!) lcads to the results:

a,.(x, ~h) +ia, (x, —h) = BG,(x) + BG,(x) (B22)
where

Gi() =G (D+G ()
G = G D+ G (D)
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and
sin Ay |

G.(D= J‘ A=D1+ HRA+(1 =R A+ R )i e 0" —4(1 —x)(x— f)Ryhi e W) e dAi
(4] i

. ) .
G = ‘f 21— [BR, = R) + Ro— Ryl e™ B+ °__°A54 > di
)]

G0 = j {41 ~x){Blhe ~ k) + b — AR A7 + (1 = )[B(R, — R ) + Re+ R,J} e~ sk
0

. in A{
—3(1—0) (2~ FYRATAT € %W 4 (1 = 2)[B(Rs— Ry) —a(Ry + Ry)] e~ 4+ sl'%;i di
i
G.(D = '[ ({41 =) [Blh —h) + b + KR A} + (1 —0[B(Ry + R+ R, — Ru]} &~ 30+h
)
—4l a2 BIRATAT € WA (1 —g)[B(R, + R,) +2(R, — R;)) e~ ¥eem) ’io—i-;ld,{
£

M= B =1+ {20~28 +[Bx— 48 +4B(x— D)JAIA}) e~ Py (B2 —a?) e ¥4,

APPENDIX C

For subinterface cracks under coatings. the form of the dislocation density function A(¢) is assumed as in
(9) when the crack is under uniform pressure, and in the form of (10) when the crack is under a pair of concentrated
loads.

Upon substitution of (9) and (10) into (14) we have

A\ M v
=2t Y AU+ Y hwk+ ¥ adi(uk)

kvt k=1 k-
= =Py —for uniform pressure Ch
! )+ F,
= - C‘{ f'_(q;t«(a» a dr} ~for concentrated load (C2)
i \/l — 13t =uy)
where
P TUOF (Oadt
1 (u k) =J A z': ‘ (CY)
1 V/I -
T F () a dt
1 (u k) = ‘f HULE (Ca)
| \/l 1
and ¢, = 0.

Equations (C1) and (C2) are solved to obtain the unknown cocflicients g,.



